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A new entry for the synthesis of N-acyl-N 0-substituted guanidines

Tetsuro Shinada,* Taiki Umezawa, Tsuyoshi Ando,
Hayato Kozuma and Yasufumi Ohfune*

Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi, Osaka 558-8585, Japan

Received 12 December 2005; revised 10 January 2006; accepted 16 January 2006
Available online 2 February 2006
Abstract—An efficient synthesis of N-acyl-N 0-substituted guanidines by condensation reaction of thiourea and (Me3Si)2NH in the
presence of EDCI is described. Various guanidines were synthesized in a simple manner.
� 2006 Elsevier Ltd. All rights reserved.
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N-Acyl-N 0-substituted guanidines are abundant source
of biologically active compounds.1–3 The a2-adrenocep-
tor agonist guanfacine,4 the multiple ion-channel blocker
amiloride,5 and its derivatives such as caripolide,6

eniporide,7 and BMS-284640,8 are representative exam-
ples.9 Moreover, natural products bearing the N-acyl-
guanidine moiety have been isolated.10 For example,
stellettadine A, a sesquiterpene amide of 1,4-diguanidino-
butane possessing unique biological profiles, for exam-
ple, larval metamorphosis-inducing activity in an
ascidian, was isolated from a kind of marine Stelletta
sponges.11 N-Acylguanidines are of great synthetic value
as starting materials for the synthesis of highly substi-
tuted guanidines3s,12 and heterocycles such as 2-imidazo-
lines,13 1,2,4-oxadiazoles,14 and guanosines.3k

These facts lead to extensive efforts for the synthesis of
this class of acylguanidines. Herein, we wish to report
a simple method to access N-acyl-N 0-substituted guani-
dines by condensation of N-acyl-N 0-substituted thiourea
1 with hexamethyldisilazane (HMDS) as a nitrogen
source under the mild reaction conditions (Scheme 1).

In contrast to a large number of methods for synthesis
of N-acyl- and N-acyl-N 0,N00-disubstituted guani-
dines,3–9 only a few methods have been reported to
access the titled guanidines. Typical procedures are
summarized as follows: (i) acylation of guanidines that
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often accompanied with the undesired diacylation reac-
tion,3r,9b,15 (ii) addition reaction of an amine to an acyl-
cyanamide derived from toxic cyanamide,9b and (iii) the
use of a protected imino group (@NH of 2) as the start-
ing material followed by its deprotection to give 2.3d,e,i

We envisioned that reaction of thioureas 1 with HMDS
in the presence of a condensation reagent would provide
2 in a simple operation. The feasibility was tested by
using N-benzoyl-N 0-phenyl thiourea (3) as a model sub-
strate that was prepared by addition reaction of aniline
to commercially available benzoyl isothiocyanate. Thio-
urea 3 was treated with 10 equiv of HMDS with several
condensation reagents 5–9 in the presence or absence of
a base (Scheme 2, Table 1). The corresponding benzoyl-
guanidine 4 was obtained in good to moderate yields in
all cases. However, the resulting products derived from
condensation reagents 5–8 and N-acylguanidine 4 were
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Table 1. Optimization of the condensation reaction

Entry Reagent Time (h) Yield (%)

1 5, Et3N 18 31
2 6, Et3N 5 42
3 7, Et3N 5 76
4 8, Et3N 2 75
5 9 2 84
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Table 2. Synthesis of N-acyl-N 0-substituted guanidines

Entry Substratea Time (h) Product Yield (%)

1 3 3 4 84
2 10a 4 11a 92
3 10b 3 11b 83
4 10c 4 11c 86
5 10d 4 11d 83
6 10e 24 11e 93
7 12b,c 48 13 90
8 14b,c 48 15 72

a 1 mmol scale.
b 0.2 mmol scale.
c 4 equiv of EDCI was used.
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difficult to separate by silica gel column chromatogra-
phy (entries 1–4). This practical problem was solved
by the use of EDCI 9. The resulting thiourea of EDCI
was easily removed by extractive work-up and silica
gel column chromatography. As a result, EDCI 9 was
found to be the best reagent in terms of high yield and
practical convenience.16

With the optimized reaction conditions in hand, the
scope and limitation of this method were examined
(Scheme 3, Table 2). Various kinds of thioureas 10a–e,
12, and 14 were smoothly condensed with HMDS in
the presence of EDCI 9. Functional groups such as
hydroxy, acetyl, silyl, vinyl, Cbz, and ester groups were
tolerated under the reaction conditions to give the
corresponding N-acylguanidines 11a–e, 13, and 15 in
excellent yields.
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Sterically bulky thiourea 10a underwent condensation
reaction to give N 0-adamantyl guanidine 11a in 92%
yield. Acetyl thioureas 12 and 14 were also converted
to guanidines 13 and 15 in 90% and 72% yields,
respectively.

The condensation reaction of N-benzoyl-N 0,N 0-di-
substituted thiourea 16 having a pyrrolidine moiety
was not proceeded at all to result in a recovery of
the starting material (Scheme 4). This indicates that
–NHR2 moiety of acyl thioureas 1 plays an important
role in this condensation reaction.

Based on the above observation, a plausible reaction
pathway via a carbodiimide intermediate is proposed
in Scheme 5. Treatment of 1 with EDCI would afford
N-acyl carbodiimide 17 as a reactive intermediate.17

HMDS smoothly reacts with 17 to give 18 or 19. The
silyl groups of 18 or 19 are removed to give N-acyl-N 0-
substituted guanidine 2 under the work-up condition.
N
H

NHR2

S
EDCI

O

R1

2

N
H

NHR2

NHO

R1

N

O

R1 C NR2

N NHR2

NTMSO

R1

HN(TMS)2

TMS

work-up

1 17

18

N NHR2

NTMSTMSO

R1

or

19

Scheme 5.



T. Shinada et al. / Tetrahedron Letters 47 (2006) 1945–1947 1947
In summary, we developed a simple method to access N-
acyl-N 0-substituted guanidines from N-acylthioureas by
the use of HMDS. Various N-acylguanidine derivatives
were prepared from the corresponding thioureas in a
facile manner. Application of this method for the syn-
thesis of biologically active guanidines and guanidine-
containing natural products is currently underway.
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